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Superhydrophobic surfaces generate very high contact angles as a result of their
microstructure. The impact of a water drop on such a surface shows unusual
features, such as total rebound at low impact speed. We report experimental and
numerical investigations of the impact of approximately spherical water drops. The
axisymmetric free surface problem, governed by the Navier–Stokes equations, is
solved numerically with a front-tracking marker-chain method on a square grid.
Experimental observations at moderate velocities and capillary wavelength much less
than the initial drop radius show that the drop evolves to a staircase pyramid and
eventually to a torus. Our numerical simulations reproduce this effect. The maximal
radius obtained in numerical simulations precisely matches the experimental value.
However, the large velocity limit has not been reached experimentally or numerically.
We discuss several complications that arise at large velocity: swirling motions observed
in the cross-section of the toroidal drop and the appearance of a thin film in the
centre of the toroidal drop. The numerical results predict the dry-out of this film for
sufficiently high Reynolds and Weber numbers. When the drop rebounds, it has a
top-heavy shape. In this final stage, the kinetic energy is a small fraction of its initial
value.

1. Introduction
The hydrophobicity of solids can be dramatically enhanced by texturing the surface,

as in the case of super-hydrophobic surfaces on which water drops behave like pearls.
These surfaces can be natural, an example being the leaves of gingko biloba, which is
used in urban areas for its capacity to resist pollution (Neinhuis & Barthlott 1997).
They can also be manufactured for various purposes: water or frost-repellent surfaces,
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waterproof textiles, self-cleaning substrates, and so on (see Nakajima, Hashimoto &
Watanabe 2001 for a recent review). In each case, the solid surface is decorated with
a rough microstructure, typically at length scales of 100 nm to 10 µm, and then coated
with wax so that the liquid sits on top of the rough texture without penetrating into
it. Thus, the liquid lies on a patchwork of solid and air, which enables very high
contact angles (such as 160–170◦) (Bico, Marzolin & Quéré 1999). In the experiments
reported in this paper, the solid surface is made super-hydrophobic by deposition and
adhesion of a porous powder (lycopodium grains) treated with silanes (to reinforce
the hydrophobicity). The results do not depend on the solid: other super-hydrophobic
solids such as natural leaves were also tested, giving the same results. The drops
impacting on the surface are generated from a pipette, so that their size is selected
by the diameter of this pipette. The speed of impact is controlled by the height from
which the droplets are ejected.

The impact of water drops on these surfaces exhibits quite unusual features, a
noteworthy one being the possible rebound of the entire drop (Hartley & Brunskill
1958; Richard 2000; Richard & Quéré 2000). This elastic behaviour is favoured by
the film of air below the drop, which eliminates direct liquid–solid contact; this avoids
the dissipation which usually takes place along moving contact lines. After the drop
hits the surface, it spreads because of its kinetic energy. The diameter passes through
a maximum, and then the drop recoils. The entire drop lifts off, in contrast to the
case of a normal (non-superhydrophobic) surface, for which a portion of the splatted
drop remains on the surface (cf. figure 4 of Fukai et al. 1993; Pasandideh-Fard et al.
1996; Bussmann, Mostaghimi & Chandra 1999).

The behaviour during impact depends mainly on the impact velocity V , or more
precisely on the Weber number We , which is the ratio of kinetic energy to surface
energy:

We =
ρV 2R

γ
. (1.1)

Here, R denotes the radius of a sphere with the same volume as the drop, and ρ and
γ denote the density and surface tension of the liquid, respectively.

For We < 1, drop deformation during impact is small, and the drop retains an oval
shape (Richard & Quéré 2000). For We > 1, the deformation becomes significant (of
the order of the drop radius), and the drop spreads over the solid, with a well-defined
maximal extension. Above a threshold Weber number (We ∼ 4), capillary waves travel
to the top without being damped, resulting in a pyramid structure with several steps
(figure 1). This structure can also occur for a normal solid surface (cf. experimental
photos of Martin 1991 and Pasandideh-Fard et al. 1996); indeed, it should exist on
normal solids because it takes place in the inertial regime of spreading, where the
wetting properties do not play a major role. Moreover, we observe similar structures
for drops of low-viscosity silicone oil, impacting at We ∼ 5, on glass substrates that
they completely wet. The case of a liquid substrate is quite different, as shown by
Thoroddsen & Takehara (2000), leading to a bell shape with concentric surface
disturbances, which eject droplets from the centre before coalescing with the bulk
fluid.

A primary goal of this paper is to describe the appearance and evolution of the
pyramid structure. Scaling arguments allow us to predict the interval in velocity in
which it should be observed. The capillary wave of maximal amplification has a phase
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Figure 1. Structures formed during the impact of a drop of radius R = 1.75 mm at velocity
V = 41 cm s−1. The timings from frame 1 are 2.7, 4.5, 4.9, 5.9, 6.1, 6.3, 6.7, 7.1, 8.0ms.

speed equal to the impact speed; hence, its wavelength λ is

λ =
γ

ρV 2
. (1.2)

For the parameters in figure 1 (V = 40 cm s−1, γ = 72.8 dyn cm−1 at 20 ◦C, ρ =
1 g cm−3), we obtain λ = 0.5mm, which is roughly the height of the layers. More
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generally, waves can only be observed if λ < R, which immediately yields

We > 1, (1.3)

Figure 1 shows that steps in the staircase subsequently empty into each other, and the
oscillation of the top can lead to the formation of a small cavity of air. The collapse
of this cavity eventually produces the eruption of a very thin jet (8th snapshot in
figure 1). This is reminiscent of simulations of a gas bubble bursting at a free surface
(Boulton-Stone & Blake 1993; Oguz 1998; Duchemin et al. 2001). Later, the whole
drop retracts because of the hydrophobicity of the substrate, and finally lifts off.

When the impact speed is slightly higher, dry-out can occur at the centre: the
outward spreading of the drop progresses to the point where a dry spot forms at
the centre of the original impact and the drop takes a toroidal shape. For a normal
solid, a similar situation is observed (cf. figure 3 of Fukai et al. 1993), although a thin
layer of liquid remains at the centre. Whether dry-out is achieved or not can be an
important practical piece of information, and we discuss it in § 3.

For still higher impact speeds, the pyramid is no longer observed, and is replaced by
a fried egg structure. The distance � of decay of a wave of wavelength λ propagating
at speed V can be written on dimensional grounds:

� ∼ ρλ2V

η
, (1.4)

where η is the viscosity. In order to observe the pyramid structure, � must be much
larger than the radius of the drop. The condition � > R with (1.4), and substitution
of (1.2) for λ yields ρRηV 3/γ 2 < 1. In terms of We and the capillary number

Ca =
ηV

γ
, (1.5)

this yields the criterion

We Ca < 1. (1.6)

For the drop of radius R = 1.75 mm, the criterion is verified since We Ca ≈ 0.02. This
criterion together with the requirement of large We yields the window of velocities
for the likely occurrence of a staircase structure:

(
γ

ρR

)1/2

< V <

(
γ 2

ρηR

)1/3

. (1.7)

For a drop of water of R = 1 mm, this gives speeds between 26 and 170 cm s−1. At
the higher end of this range, the pyramid gives way to the fried egg structure.

The numerical algorithm is summarized in § 2. An axisymmetric finite volume
formulation is used on a fixed grid, and a front-tracking method is developed for the
free surface, which is approximated by cubic splines that connect marker points. This
method allows us to deal with large drop deformations. The sections thereafter are
devoted to the results. First, § 3 describes conditions for generating a toroidal drop
with a dry spot at the centre. Secondly, § 4 addresses drop evolution during impact,
with special focus on the regime where liquid pyramids can be obtained. Thirdly,
we discuss the evolution of kinetic energy in § 5. Finally, § 6 is a discussion of the
maximal spreading diameter upon impact.
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2. Numerical method
The computational domain is a square in the (r, z)-plane. We use a fixed Cartesian

mesh of square cells. The velocity components and pressure are evaluated at centres
of edges or cells with the MAC grid. The front-tracking method is the free-surface
marker method described in detail in Popinet & Zaleski (2002) and we sketch it here.

2.1. Governing equations

A finite volume formulation is used for the axisymmetric Navier–Stokes equations,
which are converted to an integral form over each cell. That is, the momentum
equation

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + div S (2.1)

is converted to the integral form∫
Ω

ρut dV +

∫
∂Ω

ρu(u · n) dS =

∫
∂Ω

(S · n − pn) dS. (2.2)

Here S denotes the viscous stress tensor. This equation is then discretized within each
cell. When the cell is cut by the interface, the surface integrals involve a portion over
the interface. At the free surface, shear stress is required to be zero, and the jump in
the normal stress is balanced by the surface tension force. That is, we have

S · n − pn = −σκn, (2.3)

where σ is the surface tension coefficient and κ is the curvature.
A projection method is used to separate the update of the velocity from the

computation of the pressure. In the projection, we first calculate an intermediate
velocity field u∗ from a discretized version of the equation∫

Ω

ρ
u∗ − un

	t
dV +

∫
∂Ω

ρun(un · n) dS =

∫
∂Ω1

S · n dS −
∫

∂Ω2

σκn dS. (2.4)

Here ∂Ω1 is the part of ∂Ω which is in the interior of the flow domain, and ∂Ω2 is
the part on the interface. At the second step of the projection, we set∫

Ω

ρ
un+1 − u∗

	t
dV = −

∫
∂Ω1

pn dS, (2.5)

and p is determined from solving a Poisson-type equation which exploits the fact that
un+1 ought to be divergence-free. A multigrid scheme is used to solve this.

2.2. Boundary and initial conditions

The boundary condition at the bottom wall of the computational box is a free-slip
condition. This was chosen since it is generally expected that friction is weak or
vanishing during impact, with possibly thin air films forming between the surface
and the liquid. For the bottom wall condition, a continuous marker chain is used
for the free surface: the marker chain is closed and wraps around the bottom of the
drop, where, after impact, it lies ‘flat’ along the bottom surface. Physically, this is an
interface lying exactly parallel to the bottom wall. This reduces to imposing a 180◦

contact angle at the point where the interface ‘detaches’ from the solid boundary, i.e.
a perfectly non-wetting surface. The features observed in laboratory experiments are
not sensitive to small changes in the contact angles, and the dynamic contact angle is
always found to saturate at 180◦ (see figure 1 for example).
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To be able to calculate finite difference derivatives of the velocity near the interface,
we need to extrapolate the velocity outside the flow region. This is done as follows.
First, the cubic spline approximation to the surface position is used to calculate the
normal pointing outwards from the liquid. Secondly, the velocities at the nodes within
the liquid in this neighbourhood are extrapolated linearly to nodes in the air by a
least-squares fit subject to vanishing shear stress.

In figure 1, the drop is generated by dripping. As the drop falls, it may oscillate.
The main features of the pyramid and capillary waves are not sensitive to the initial
conditions. Although not impossible, calculations of the moment of impact are tedious
to set up and computationally expensive. Thus our calculations are done from an
initial condition where the droplet is already touching the surface.

2.3. Tracking the free surface

The reader is referred to Popinet & Zaleski (2002) for details. The surface tension term
is computed using cubic spline curves. The markers are advected by the interpolated
velocity field calculated on the fixed grid.

The front-tracking component is summarized as follows. The interface is represented
using an ordered list of marker particles (xi, yi), 1 � i � N . A list of connected
polynomials (px

i (s), p
y
i (s)) is constructed using the marker particles and gives a

parametric representation of the interface, with s an approximation of the arclength.
Both lists are ordered and thus identify the topology of the interface.

2.3.1. Advecting the points

The first step in the algorithm is the advection of the marker particles. A bilinear
interpolation of the velocity field is used. The marker particles are advected in a
Lagrangian manner with a first-order explicit scheme. Once the points have been
advected, we then reconstruct the parametric representation of the interface using
cubic splines.

2.3.2. Redistribution

As the interface evolves, the markers drift along the interface following tangential
velocities and we may need more markers if the interface is stretched by the flow. We
then need to redistribute the markers in order to ensure a homogeneous distribution
of points along the interface. This is done at each time step. This is similar to the
approach of boundary integral codes that also use arclength parameterization, cubic
splines and redistribution of nodes.

3. Critical curve for dry-out
Figure 2 shows experimental photographs for a typical dry-out sequence (note the

hole in the middle of the torus, which is clearly visible on the third picture of the
sequence). For experimentalists, it is convenient to be able to predict whether a dry
spot would emerge upon impact.

Our simulations are conducted in a computational box 14/3 � 4.67 mm square with
a 256 × 256 grid. Initially, the droplet is perfectly spherical and touches the ground.
We define a Reynolds number:

Re =
V Rρ

η
, We =Ca Re. (3.1)
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Figure 2. Photograph of a typical dry-out sequence. Experiment performed with a water
drop for which D = 4 mm, and U = 14 cm s−1 so that We = 1.1.

The effect of gravity is included in our calculations, but it is not an important factor
during the impact phase. Figure 3 shows the critical values of Weber and Reynolds
numbers for which the drop becomes a torus after impact. The intersection of the
bottom wall with the axis of symmetry is ‘Wet’ for a spherical topology and ‘Dry’ for
a toroidal one. The formula shown in the figure for the curve is an empirical fit.

At high Reynolds numbers, viscous effects are small and the topology is determined
by a competition between just inertia and surface tension. Thus, the Weber number
becomes the only dimensionless parameter and the graph asymptotes to We =
constant, independent of the Reynolds number. On the other hand, at low Reynolds
numbers, viscous effects are important and, therefore, a combination of both We and
Re determines the critical curve.

For a given experimental set-up, figure 3 guides the selection of the drop velocity
to achieve the desired condition. For example, in the development of technology for
liquid-metal microdroplet deposition (Fukai et al. 1995), the ‘wet’ condition is desired.
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Figure 3. Curve delineating conditions for dry-out. Initial drop is spherical.

4. Drop evolution
For the results reported here, the computational box and grid are as in the previous

section. The density of the liquid is 1 gm cm−3, and the viscosity is 1 cP. The surface
tension is 72.8 dyn cm−1.

We begin by showing in figure 4 the corresponding simulation for the experimental
results of figure 1 displayed in § 1: 2.7 ms (between photo 1 and 2), 1.8 (between 2
and 3), etc. The initial shape is approximated well by a linear mode of oscillation of
a drop released from a nozzle, namely mode 2. The distance from the centre of the
drop to the free surface is then

r(θ) = R0(1.0 + εY2(θ)), (4.1)

where Y2(θ) is a spherical harmonic of order 2 (Lamb 1932; Plesset & Prosperetti
1977). This is used with ε = 0.29 deviation. Although we acknowledge that the initial
shape of the drop may be due to the mode 2 oscillation, we do not attempt to include
the velocity of the oscillations in our computations, because we do not know at what
phase of the oscillation the drop is at impact. If the drop is at maximum distortion, the
velocity is zero in the linear approximation. We can estimate the order of magnitude
of the velocity of the oscillations. According to Lamb (1932), the frequency for a
water drop is

ω = 24.3a−3/2, (4.2)

where a is the radius of the drop (all numbers are in CGS units). For a maximum
radial distortion of εa, we therefore find a maximum speed of

um = 24.3εa−1/2. (4.3)

With ε = 0.29 and a = 0.175, this yields um = 16.85. This speed, however, would be
attained at the time when the distortion is zero and the drop is spherical. We believe
that the drop at impact is actually close to maximum distortion and, therefore, the
speed due to the oscillation at the time of impact is small relative to the impact speed.
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Figure 4. Direct numerical simulations. Initial drop is mode 2, with R0 = 1.75mm and
ε = 0.29 in equation (4.1). Initial velocity V = 0.41m s−1. Timings between frames are the
same as those of the experiment in figure 1.

Our numerical results, shown in figure 4, capture the main features of figure 1.
We have conducted a spatial convergence test for these results and show in figure 5
the interface positions through a cross-section for the 256 × 256 case and the refined
512 × 512 case. These show that the former captures the qualitative features, while
the latter accentuates the fine features such as the small capillary waves at the top.
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(a) (b)

Figure 5. Spatial convergence test corresponding to figure 4. (a) 256 × 256 and (b) 512 × 512.

Figure 6 shows the contours for the pressure field corresponding to four of the
stages in figure 4. We see that the pyramidal steps are not flat but rimmed, as verified
experimentally by taking photographs at an angle to the drop. These contour lines
are at regular spacings of the pressure values. Clearly, the maximum values evolve
with time toward the top of the pyramid.

5. Kinetic energy evolution
During the formation of the pyramid, the flow is upwards at the bottom centre of

the drop, and downwards at the top centre. By the time the drop deforms to a torus,
the motion is mainly a swirling motion in the (r, z)-plane. The evolution of kinetic
energy is shown in figure 7. When the drop collapses, kinetic energy is converted to
surface energy which is partly in the form of capillary waves. The capillary waves
travel up the drop, forming the pyramid. They meet at the top of the pyramid, forming
a nipple. Thereafter, the centre of the drop continues its descent. At this point, the
kinetic energy is at its minimum, and there is still some residual amount left, which is
most apparent as the swirling motion in the bulk of the toroidal ring. In figure 7, the
centre of the drop dries out, and the numerical method stops at this singularity in the
velocity field. When the initial velocity is slightly lower, for example V = 35 cm s−1,
dry-out does not occur, and the drop then begins to rise at the centre as the kinetic
energy increases. When the drop rises further, kinetic energy starts to decrease again.
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Figure 6. Pressure fields corresponding to the drop evolution of figure 4.
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Figure 7. Kinetic energy vs. time in MKS units, for the simulation of figure 4.
Mesh 	x = 0.46̇/256.

These results may contribute to an understanding of why a simple criterion
overpredicts the experimentally observed horizontal spread: when the maximal radius
is estimated by balancing the initial kinetic energy with surface energy, the estimate
leaves out the small amount of kinetic energy present in the toroidal vortical motion.
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(a)

(b)

Figure 8. Upon total rebound, the drop typically takes a top-heavy shape. (a) Numerical
simulation with velocity vectors and pressure contours for conditions of figure 4 except that
V = 35 cm s−1. (b) Experimental photograph taken from above the drop at an angle for a
typical total rebound. V = 1m s−1, R = 1 mm, time from impact 57 ms.

As discussed in the introduction, a super-hydrophobic surface allows the drop to
ball up upon recoil and rebound. For a normal surface, recoil leaves a residue with
droplets possibly emitted by a central mass. After it lifts off, the drop evolves to a
top-heavy mushroom shape as shown in figure 8(a). Experimental photographs for
the total rebound for the conditions of figure 1 are not available, but are qualitatively
similar to figure 8(b) (V = 1 m s−1, R = 1mm). Figure 9 shows the evolution of the
kinetic energy for a situation where rebound occurs.

6. Maximal spreading radius
When an initially spherical drop of radius on the order of millimetres spreads out

at impact, the maximal spreading radius is on the order of a centimetre. At speeds
on the order of metres per second for our water drop,

We � 1,

which means that the surface energy of the drop prior to impact is negligible in
comparison to its kinetic energy. We denote the initial radius by R0 and impact speed
by V . For simplicity, the drop shape at maximal spreading is approximated by a disk
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Figure 9. Impact of an ellipsoidal drop of radii Rhoriz = 0.15, Rx = 0.24 cm at initial
velocity V = 38 cm s−1 started touching the ground. Kinetic energy vs. time, computed in
[0, 0.45] × [0, 0.675] cm2 with mesh 	r = 	x = 0.45/256.
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Figure 10. Dimensionless maximal radius R/R0 vs. V cm s−1, R0 = 0.8mm. Comparison of
numerical (∗) and experimental results (�). Numerical data are computed on a 256×256 mesh
on a square computational domain (length of side 8/3R0 for impact speeds 45 and 100 cm s−1,
4R0 for speeds 200 and 300 cm s−1, and 6R0 for 400 cm s−1). The data follow approximately a
line of slope 0.5.

of radius R and thickness e; the use of this approximation in the case of central
dry-out as in figure 2 is rough, but the volume difference between the toroidal shape
and the disk is small.

The simplest way to estimate the maximal spreading radius is to assume that the
kinetic energy in the drop is converted to surface energy. At the point where the disk
has reached is maximal radius, the surface energy is proportional to γR2. We balance
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this with the kinetic energy at impact (which is proportional to ρV 2R3
0) to obtain

R ∼ R0We1/2, (6.1)

or R ∼ V .
Richard (2000) obtained experimental data on the maximal radius vs. V for a

water drop of a different initial radius, 0.8 mm. The dependence of the maximal
radius on impact speed is shown in figure 10. The numerical data are the asterisks
and the experimental values are squares. The figure shows close agreement between
the two results. These data scale as approximately R ∼

√
V . This is at variance with

the theory above which would predict R ∼ V . We believe that the main reason for
this discrepancy is that the assumption of a thin disk underlying the above theoretical
argument is not justified at the values of R/R0 which are actually obtained. We note
that in the limit of small impact speed, R − R0 would be proportional to V 2, so the
slope d ln R/d ln V would tend to zero. Because of dry-out and associated numerical
difficulties, we cannot continue our simulations into a range where the assumption
that the drop spreads into a thin disk is valid.

7. Conclusions
When a drop of liquid impacts a super-hydrophobic surface, it evolves into a

pyramid structure when the impact speed is sufficiently high and capillary waves
persist over the surface of the impacting drop. In terms of dimensionless parameters,
this criterion requires We > 1 and We Ca < 1.

Numerical simulations are conducted for a water drop with a free-surface front-
tracking algorithm, and a satisfactory comparison with the experimental photographs
is achieved.

We find that at the first minimum value of kinetic energy, the drop achieves its
maximal spreading radius and is toroidal, storing the remaining kinetic energy in a
swirling motion in the drop. This is followed by a rebound of the entire drop when
the impact speed is sufficiently high, but the kinetic energy on the rebound is smaller
than the original value. We believe that this is because the drop does not return to
its original shape at rebound and therefore has increased surface energy. The effect
of viscous dissipation is likely to be minor at the Reynolds numbers involved.

We have determined the critical curve in the Reynolds number vs. Weber number
space for the conditions under which the centre of the drop dries out. In a given
experiment where the impact speed can be varied, this study shows that there is a
critical impact speed beyond which the centre dries out.

We comment that the fine structure of the capillary waves may well be affected by
small changes in the initial condition. It is likely that not only the drop ellipticity, but
also the velocity field inside would play a role. For instance, when one does a study
of a plane capillary wave oscillation or an instability, it is very important to initiate
not only the interface deformation but also the velocity field. In addition to the
velocity field from the possible oscillations of the drop upon its creation, there may
be a contribution from air friction during the fall. Furthermore, the droplet is in a
state of superposition between various modes of oscillation, as not only mode 2 is
excited. The study of these issues is a worthwhile topic for future research.

This research was sponsored by CNRS, NSF-INT, NSF-DMS, NSF-CTS,
ACS-PRF, NSF-SCREMS, and utilized the Illinois NCSA SGI Origin 2000.
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